- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abreu, Dilip (2)
-
Manea, Mihai (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abreu, Dilip; Manea, Mihai (, Econometrica)A seller trades withqout ofnbuyers who have valuationsa1 ≥ a2 ≥ ⋯ ≥ an > 0 via sequential bilateral bargaining. Whenq < n, buyer payoffs vary across equilibria in the patient limit, but seller payoffs do not, and converge to maxl≤q+1[(a1+a2+⋯+al−1)/2+al+1+⋯+aq+1]. Ifl*is the (generically unique) maximizer of this optimization problem, then each buyeri < l*trades with probability 1 at the fair priceai/2, while buyersi ≥ l*are excluded from trade with positive probability. Bargaining with buyers who face the threat of exclusion is driven by asequential outside option principle: the seller can sequentially exercise the outside option of trading with the extra marginal buyerq + 1, then with the new extra marginal buyerq, and so on, extracting full surplus from each buyer in this sequence and enhancing the outside option at every stage. A seller who can serve all buyers (q = n) may benefit from creating scarcity by committing to exclude some remaining buyers as negotiations proceed. Anoptimal exclusion commitment, within a general class, excludes a single buyer but maintains flexibility about which buyer is excluded. Results apply symmetrically to a buyer bargaining with multiple sellers.more » « less
An official website of the United States government

Full Text Available